8 research outputs found

    Lumbar disk 3D modeling from limited number of MRI axial slices

    Get PDF
    This paper studies the problem of clinical MRI analysis in the field of lumbar intervertebral disk herniation diagnosis. It discusses the possibility of assisting radiologists in reading the patients MRI images by constructing a 3D model for the region of interest using simple computer vision methods. We use axial MRI slices of the lumbar area. The proposed framework works with a very small number of MRI slices and goes through three main stages. Namely, the region of interest extraction and enhancement, inter-slice interpolation, and 3D model construction. We use the Marching Cubes algorithm to construct the 3D model of the the region of interest. The validation of our 3D models is based on a radiologist’s analysis of the models. We tested the proposed 3D model construction on 83 cases and We have a 95% accuracy according to the radiologist evaluation. This study shows that 3D model construction can greatly ease the task of the radiologist which enhances the working experience. This leads eventually to more accurate and easy diagnosis process

    A Novel Deep Learning Technique for Detecting Emotional Impact in Online Education

    No full text
    Emotional intelligence is the automatic detection of human emotions using various intelligent methods. Several studies have been conducted on emotional intelligence, and only a few have been adopted in education. Detecting student emotions can significantly increase productivity and improve the education process. This paper proposes a new deep learning method to detect student emotions. The main aim of this paper is to map the relationship between teaching practices and student learning based on emotional impact. Facial recognition algorithms extract helpful information from online platforms as image classification techniques are applied to detect the emotions of student and/or teacher faces. As part of this work, two deep learning models are compared according to their performance. Promising results are achieved using both techniques, as presented in the Experimental Results Section. For validation of the proposed system, an online course with students is used; the findings suggest that this technique operates well. Based on emotional analysis, several deep learning techniques are applied to train and test the emotion classification process. Transfer learning for a pre-trained deep neural network is used as well to increase the accuracy of the emotion classification stage. The obtained results show that the performance of the proposed method is promising using both techniques, as presented in the Experimental Results Section

    An Intelligent and Precise Agriculture Model in Sustainable Cities Based on Visualized Symptoms

    No full text
    Plant diseases represent one of the critical issues which lead to a major decrease in the quantity and quality of crops. Therefore, the early detection of plant diseases can avoid any losses or damage to these crops. This paper presents an image processing and a deep learning-based automatic approach that classifies the diseases that strike the apple leaves. The proposed system has been tested using over 18,000 images from the Apple Diseases Dataset by PlantVillage, including images of healthy and affected apple leaves. We applied the VGG-16 architecture to a pre-trained unlabeled dataset of plant leave images. Then, we used some other deep learning pre-trained architectures, including Inception-V3, ResNet-50, and VGG-19, to solve the visualization-related problems in computer vision, including object classification. These networks can train the images dataset and compare the achieved results, including accuracy and error rate between those architectures. The preliminary results demonstrate the effectiveness of the proposed Inception V3 and VGG-16 approaches. The obtained results demonstrate that Inception V3 achieves an accuracy of 92.42% with an error rate of 0.3037%, while the VGG-16 network achieves an accuracy of 91.53% with an error rate of 0.4785%. The experiments show that these two deep learning networks can achieve satisfying results under various conditions, including lighting, background scene, camera resolution, size, viewpoint, and scene direction

    Diabetes Monitoring System in Smart Health Cities Based on Big Data Intelligence

    No full text
    Diabetes is a metabolic disorder in which the body is unable to properly regulate blood sugar levels. It can occur when the body does not produce enough insulin or when cells become resistant to insulin’s effects. There are two main types of diabetes, Type 1 and Type 2, which have different causes and risk factors. Early detection of diabetes allows for early intervention and management of the condition. This can help prevent or delay the development of serious complications associated with diabetes. Early diagnosis also allows for individuals to make lifestyle changes to prevent the progression of the disease. Healthcare systems play a vital role in the management and treatment of diabetes. They provide access to diabetes education, regular check-ups, and necessary medications for individuals with diabetes. They also provide monitoring and management of diabetes-related complications, such as heart disease, kidney failure, and neuropathy. Through early detection, prevention and management programs, healthcare systems can help improve the quality of life and outcomes for people with diabetes. Current initiatives in healthcare systems for diabetes may fail due to lack of access to education and resources for individuals with diabetes. There may also be inadequate follow-up and monitoring for those who have been diagnosed, leading to poor management of the disease and lack of prevention of complications. Additionally, current initiatives may not be tailored to specific cultural or demographic groups, resulting in a lack of effectiveness for certain populations. In this study, we developed a diabetes prediction system using a healthcare framework. The system employs various machine learning methods, such as K-nearest neighbors, decision tree, deep learning, SVM, random forest, AdaBoost and logistic regression. The performance of the system was evaluated using the PIMA Indians Diabetes dataset and achieved a training accuracy of 82% and validation accuracy of 80%

    Hybrid CLAHE-CNN Deep Neural Networks for Classifying Lung Diseases from X-ray Acquisitions

    No full text
    Chest and lung diseases are among the most serious chronic diseases in the world, and they occur as a result of factors such as smoking, air pollution, or bacterial infection, which would expose the respiratory system and chest to serious disorders. Chest diseases lead to a natural weakness in the respiratory system, which requires the patient to take care and attention to alleviate this problem. Countries are interested in encouraging medical research and monitoring the spread of communicable diseases. Therefore, they advised researchers to perform studies to curb the diseases’ spread and urged researchers to devise methods for swiftly and readily detecting and distinguishing lung diseases. In this paper, we propose a hybrid architecture of contrast-limited adaptive histogram equalization (CLAHE) and deep convolutional network for the classification of lung diseases. We used X-ray images to create a convolutional neural network (CNN) for early identification and categorization of lung diseases. Initially, the proposed method implemented the support vector machine to classify the images with and without using CLAHE equalizer. The obtained results were compared with the CNN networks. Later, two different experiments were implemented with hybrid architecture of deep CNN networks and CLAHE as a preprocessing for image enhancement. The experimental results indicate that the suggested hybrid architecture outperforms traditional methods by roughly 20% in terms of accuracy

    A Novel Deep Learning Technique for Detecting Emotional Impact in Online Education

    No full text
    Emotional intelligence is the automatic detection of human emotions using various intelligent methods. Several studies have been conducted on emotional intelligence, and only a few have been adopted in education. Detecting student emotions can significantly increase productivity and improve the education process. This paper proposes a new deep learning method to detect student emotions. The main aim of this paper is to map the relationship between teaching practices and student learning based on emotional impact. Facial recognition algorithms extract helpful information from online platforms as image classification techniques are applied to detect the emotions of student and/or teacher faces. As part of this work, two deep learning models are compared according to their performance. Promising results are achieved using both techniques, as presented in the Experimental Results Section. For validation of the proposed system, an online course with students is used; the findings suggest that this technique operates well. Based on emotional analysis, several deep learning techniques are applied to train and test the emotion classification process. Transfer learning for a pre-trained deep neural network is used as well to increase the accuracy of the emotion classification stage. The obtained results show that the performance of the proposed method is promising using both techniques, as presented in the Experimental Results Section

    A novel secure cryptography model for data transmission based on Rotor64 technique

    No full text
    In recent years, there have been many Security vulnerabilities that threaten user security, these threats have led to the finding of user files, so the use of the Internet has become unlimited, and the number of digital network devices has increased,Therefore, maintaining the confidentiality and integrity of information has become an urgent necessity to preserve user information, due to the increase in hackers and intruders, and the innovation of modern methods of penetration every day. Data cryptography has proven to be a secure way to protect a user\u27s data. Many current cryptography algorithms are considered weak regarding data transmission over the Internet, so newly updated algorithms are in high demand. In this paper, we proposed to develop the ancient rotor machine depending on the base64 codding technique, in which we replaced the alphabets of the ancient rotor machine with the alphabets of base64 that contain 64 characters. Furthermore, we proposed a key exchange based on One-time password OTP code via SMS, OTP is mechanism for logging on to a network using unique password that can only be used once, to overcome the static password method that is least secure, and used it to generate the subkeys for rotor machines based on hash and random permutation techniques. MD5 algorithm function is used to authenticate the original message, Finally, we experimented with these techniques of secure sending e-mails by encrypting the contents of them with the proposed technique. However, the proposed security technique got promising results
    corecore